Круги эйлера для дошкольников

Картотека игр с кругами Эйлера картотека по математике на тему

Игра «Два круга»

Цель: формирование умений разделяет фигуры на две группы по двум свойствам. Производит логические операции «не», «и».

Ход игры:

Перед началом игры необходимо выяснить, где находятся четыре области, определяемые на игровом листе двумя обручами: внутри обоих обручей; внутри красного, но вне синего обруча; внутри синего, но вне красного обруча и вне обоих обручей (Эти области нужно обвести).

Расположить фигуры так, чтобы внутри красного оказались все красные фигуры, а внутри синего все круглые.

После решения практической задачи по расположению фигур дети отвечают на вопросы: Какие фигуры лежат внутри обоих кругов; внутри синего, но вне красного круга. Игру с двумя кругами целесообразно проводить много раз, варьируя правила игры.

Игра «Три круга»

Цель: формирование умений разделяет фигуры на три группы по двум свойствам. Производит логические операции «не», «и».

Ход игры:

Раскладывается три круга разного цвета. Детям даётся задание разложить фигуры так, чтобы внутри синего круга оказались все маленькие фигуры, внутри красного – все толстые, а внутри желтого – все круглые. После решения практической задачи по расположению фигур дети отвечают на вопросы: Какие фигуры принадлежат всем трём кругам; и синему и жёлтому; находятся вне желтого и красного кругов. Игру с тремя кругами целесообразно проводить много раз, варьируя правила игры.

Урок математики по теме «Круги Эйлера»

Цель урока: Познакомить обучающихся с решением простейших логических задач методом кругов

Задачи урока

  • Образовательная: дать обучающимся представление о методе кругов Эйлера;
  • Развивающая: развитие логического и аналитического мышления;
  • Воспитательная: воспитание умения выслушивать мнение других обучающихся и отстаивать свою точку зрения.

Материал для урока: карточки с заданиями, портрет Л. Эйлера, доска.

Ход урока

  1. Организационный момент (3 мин)
  2. Разминка (5 мин)
  3. Изучение нового материала (5 мин)
  4. Первичная отработка метода решения (30 мин)
  5. Подведение итогов занятия (2 мин)
  6. Организационный момент.

Преподаватель: Здравствуйте, ребята! Сегодня на занятии мы с вами познакомимся с новым для вас методом решения логических задач — кругами Эйлера. Мы научимся решать некоторые из тех зада, которые входят в группу конкурсных и олимпиадных. Целью нашего урока: является познакомиться с решением простейших логических задач методом кругов.

Разминка

Вниманию учащихся предлагается несколько шуточных логических задач, направленных на активизацию мышления обучающихся.

  1. Гусь стоит 20 рублей и еще половину того, сколько стоит он на самом деле. Сколько стоил гусь?
  2. Два спортсмена на соревновании пробежали по стадиону 8 кругов. Сколько кругов пробежал каждый?
  3. Назовите два числа, разность которых равнв их сумме.
  4. Сколько будет: два плюс два умножить на два?

Изучение нового материала

Преподаватель: В математике рисунки в виде кругов, изображающих множества, используются очень давно. Одним из первых, кто пользовался этим методом, был выдающийся немецкий математик и философ Готфрид Вильгельм Лейбниц (1646-1716). В его черновых набросках были обнаружены рисунки с такими кругами. Затем этот метод довольно основательно развил и Леонард Эйлер. Он долгие годы работал в Петербургской Академии наук.

Для наглядной геометрической иллюстрации понятий и соотношений между ними используется диаграммы Эйлера-Венна (круги Эйлера). Если имеются какие-либо понятия А, В, С и т.д., то объем каждого понятия (множество) можно представить в виде круга, а отношения между этими объектами (множествами) — в виде пересекающихся кругов.

Перед решением задачи ответьте на следующие вопросы:

  1. О скольких множествах идет речь в данной задаче?
  2. Какие из перечисленных в задаче данных относятся к разным множествам одновременно?

Первичная отработка метода решения. Обучающимся предлагаются следующие задачи. Первая задача рассматривается подробно. Последующие задачи решаются обучающимися у доски.

Задача 1. Домашние любимцы. У всех моих подруг есть домашние питомцы. Шестеро из них любят и держат кошек, а пятеро — собак. И только у двоих есть и те и другте. Угадайте, сколько у меня подруг?

Решение: Изобразим два круга, так как у нас два вида питомцев. В одном будем фиксировать владелиц кошек, в другом — собак. Поскольку у некоторых подруг есть и те, и другие животные, то круги нарисуем так, чтобы у них была общая часть. В этой общей части ставим цифру 2 так как кошки и собаки есть у двоих. В оставшейся части «кошачьего» круга ставим цифру 4 (6 — 2 = 4). В свободной части «собачьего» круга ставим цифру 3 (5 — 2 = 3). А теперь рисунок сам подсказывает, что всего у меня 4 + 2 + 3 = 9 подруг.

Ответ. 9 подруг.

Задача 2. Библиотеки. В классе 30 учеников. Все они являются читателями школьной и районной библиотек. Из них 20 ребят берут книги в школьной библиотеке, 15 — в районной. Сколько учеников не являются читателями школьной библиотеки?

Решение: Пусть круг Ш изображает читателей только школьной библиотеки, круг Р — только районной. Тогда ШР — изображение читателей и районной, и школьной библиотек одновременно. Из рисунка следует, что число учеников, не являющихся читателями школьной библиотеки, равно:

Ответ: 10 учеников не являются читателями школьной библиотеки.

Задача 3. Любимые мультфильмы. Среди школьников пятого класса проводилось анкетирование по любимым мультфильмам. Самыми популярными оказались три мультфильма: «Белоснежка и семь гномов», «Винни Пух», «Микки Маус». Всего в классе 28 человек. «Белоснежку и семь гномов» выбрали 16 учеников, среди которых трое назвали еще «Микки Маус», шестеро — «Винни Пух», а один написал все три мультфильма. Мультфильм «Микки Маус» назвали 9 ребят, среди которых пятеро выбрали по два мультфильма. Сколько человек выбрали мультфильм «Винни Пух»?

Задача 4. Хобби. Из 24 учеников 5 класса музыкальную школу посещают 10 человек, художественную школу — 8 человек, спортивную школу — 12 человек, музыкальную и художественную школу- 3, художественную и спортивную школу — 2, музыкальную и спортивную школу — 2, все три школы посещает 1 человек. Сколько учеников посещают только одну школу? Сколько учащихся ни в чем себя не развивают?

Решение: В этой задаче 3 множества, из условий задачи видно, что все они пересекаются между собой. Только музыкальную школу посещают 10-3-2-1=4 учащихся. Только художественную школу посещают 8-3-2-1=2 учащихся. Только спортивную школу посещают 12-2-2-1=7 учащихся.

Только одну школу посещают 4+2+7=13 учеников.

Ни в чем себя не развивают 24-(4+2+7+3+2+2+1)=3 учащихся.

Ответ. 13 учеников посещают только одну школу, 3 учащихся себя не развивают.

Задача 5. О головоломках. На полке стояло 26 различных математических игр — головоломок. В 4 из них поиграл и Гриша, и Саша. Игорь попробовал проиграть 7 игр, которых не касались ни Гриша, ни Саша, и две головоломки, в которые играл Гриша. Всего Гриша играл в 11 математических игр — головоломок. Во сколько головоломок сыграл Саша?

Решение: Так как Гриша всего проиграл в 11 игр, из них 4 головоломки решены Сашей и 2 головоломки — Игорем, то 11 — 4 — 2 = 5 — игр проиграно только Гришей. Следовательно, 26 — 7 — 2 — 5 — 4 = 8 — головоломок решено только Сашей. А всего Саша играл в игр.

Ответ. 12 игр решил Саша.

Задача 7. Спорт для всех. В классе 38 человек. Из них 16 играют в баскетбол, 17 — в хоккей, 18 — в футбол. Увлекаются двумя видами спорта — баскетболом и хоккеем — четверо, баскетболом и футболом — трое, футболом и хоккеем — пятеро. Трое не увлекаются ни баскетболом, ни хоккеем, ни футболом. Сколько ребят увлекаются одновременно тремя видами спорта? Сколько ребят увлекается лишь одним из этих видов спорта?

Решение. Воспользуемся кругами Эйлера.

Пусть большой круг изображает всех учащихся класса, а три меньших круга Б, Х и Ф изображают соответственно баскетболистов, хоккеистов и футболистов. Тогда фигура Z, общая часть кругов Б, Х и Ф, изображает ребят, увлекающихся тремя видами спорта. Из рассмотрения кругов Эйлера видно, что одним лишь видом спорта — баскетболом занимаются 16 — (4 + z + 3) = 9 — z; одним лишь хоккеем 17 — (4 + z + 5) = 8 — z; одним лишь футболом

Ответ: Двое ребят увлекаются всеми тремя видами спорта человека. Увлекающихся лишь одним видом спорта: 21 человек.

Домашнее задание. Задача 6. Спортивный класс. В классе 35 учеников. 24 из них играют в футбол, 18 — в волейбол, 12 — в баскетбол. 10 учеников одновременно играют в футбол и волейбол, 8 — в футбол и баскетбол, а 5 — в волейбол и баскетбол. Сколько учеников играют и в футбол, и в волейбол, и в баскетбол одновременно?

Подведение итогов занятия

Учащиеся подводят итоги занятия самостоятельно или отвечая на наводящие вопросы:

  1. С чем мы познакомились на занятии?
  2. В чем заключается этот метод? В чем он заключается?
  3. Чему мы сегодня научились на занятии?
  4. С чего необходимо начать решение задачи?
  5. Какие задачи вызвали у вас наибольшее затруднение? Почему?

Мастер-класс «Использование кругов Эйлера для развития логического мышления дошкольников»

наталия парилова
Мастер-класс «Использование кругов Эйлера для развития логического мышления дошкольников»

Ход мастер класса:

Добрый день, уважаемые коллеги! Тема нашего мастер класса «Использование кругов Эйлера для развития логического мышления дошкольников».

Цель мастер класса:

Повышение профессиональной компетентности педагогов в использовании инновационной игровой технологии- круги Эйлера при организации работы с детьми по развитию логического мышления.

Задача:

1. Познакомить с кругами Эйлера.

2. Познакомить с особенностями их применения в работе с детьми по

развитию логического мышления.

Актуальность

• Навыки, умения работать с моделями (кругами Эйлера) приобретенные в дошкольный период, будут служить фундаментом для универсальных учебных действий.

• Важнейшим является формирование и развитие логического мышления и способность «действовать в уме».

Новизна

Новизна состоит в том, чтобы еще в детском возрасте иметь возможность развивать и корректировать логическое мышление дошкольников, что имеет большое значение в решении математических задач.

Гипотеза

Считаю, использование кругов Эйлера приведет к активизации детского механизма саморазвития, в результате которой логическое мышление дошкольников преобразуется на качественно новый уровень

Круги Эйлера были изобретены Леонардом Эйлером в 18 веке и с тех пор широко используются в математике, логике и в различных прикладных направлениях. Учитывая простоту и наглядность модели кругов Эйлера, она может быть с успехом использована в детском саду. Признаки предмета в кругах Эйлера обозначаются схематично, с помощью пиктограмм.

Круги Эйлера — это геометрическая схема, с помощью которой можно наглядно отобразить отношения между понятиями или множествами объектов.

Существуют несколько моделей кругов:

а) Непересекающиеся круги;

б) Пересекающиеся круги;

в) Один круг вложен в другой

Круги Эйлера можно использовать как в непосредственно образовательной деятельности с детьми по развитию речи и по познавательному развитию, по ФЭМП, так и в самостоятельной деятельности детей. Используя круги Эйлера, ребенок овладевает следующими элементами логических действий:

анализ объектов с целью выделения признаков (существенных,

несущественных);

синтез — составление целого из частей, в том числе

самостоятельное достраивание с восполнением недостающих

компонентов;

выбор оснований и критериев для сравнения, классификации

объектов;

подведение под понятие, выведение следствий;

установление причинно-следственных связей;

построение логической цепи рассуждений;

Работа по обучению разделения на множества и подмножества должна идти в несколько этапов, с постепенным усложнением.

Начать применять данную технологию можно с детьми младшего возраста. Для начала вы им объясняете, что означает «положить в круг, обруч», и что такое «положить предмет вне круга». Затем можно приступать к распределению предметов на 2 круга.

По мере усвоения материала задания постепенно усложняются.

Например,задание:

«У вас есть картинки, положите, пожалуйста, в один круг только желтые предметы, а в другой круг — транспорт».

Часто, дети, не долго думая, выкладывают карточки так же, как и в первый раз — транспорт попадает в один круг, а предметы голубого цвета — в другой.

В этом случае, необходимо обратить внимание детей на то, что машина у нас желтого цвета, и поэтому ее тоже следовало бы положить в круг с желтыми предметами. Дети послушно перекладывают машину в указанный круг. Иногда какой-нибудь наблюдательный ребенок замечает, что теперь машина не попадает в круг с транспортом (если это не произойдет, необходимо самой обратить внимание детей на возникшее противоречие). И разгорается дискуссия. Одни дети снова тянут машину в круг с кораблем и самолетом, на основании того, что все это — транспорт, другие говорят, что надо оставить ее с лопаткой и мячом, поскольку она — желтая. Здесь важно обратить внимание детей, что если положить машину только в один круг, то задача будет решена неверно. Надо разместить карточку с машиной так, чтобы она была и в одном круге, и в другом.

Тогда воспитатель задает вопрос: Как вы думаете, ребята, что же нам делать? Как положить машину одновременно и в один круг, и в другой? Ребята задумываются и начинают выдвигать свои предложения. Одни говорят, что карточку можно разрезать.

— Но тогда в каждый круг попадет не целая машина, а ее половинка. Другие кладут карточку так, чтобы она частично лежала и в одном круге, и в другом.

— Но тогда у нас опять в круге не вся машина, а только ее часть. Ребята, а что если немного сдвинуть круги? Воспитатель медленно придвигает один круг к другому так, чтобы один из них частично наложился на другой, образуя общее для двух кругов пространство. Обычно после этого следует минута молчания. А потом один или несколько детей с горящими глазами хватают машину и кладут ее в пересечение. Ребята бурно радуются сделанному открытию. Если этого не происходит, я сама кладу машину в пересечение.

В математике применение этой технологии лучше начать с сравнения геометрических фигур.

ВЫВОД: Используя в работе с детьми данную технологию, мы способствуем развитию у них умений анализировать объекты с целью выделения признаков, осуществлять анализ и синтез, то есть составлять целое из частей, в том числе самостоятельно достраивая множества недостающими компонентами, умений сравнивать и классифицировать, обобщать, делать выводы и умозаключения, строить логические цепочки, рассуждать, которые необходимы ребенку при подготовке к обучению в школе.

логические задачи и круги Эйлера

Круги Эйлера – это геометрическая схема. С ее помощью можно изобразить отношения между подмножествами (понятиями), для наглядного представления.
Способ изображения понятий в виде кругов позволяет развивать воображение и логическое мышление не только детям, но и взрослым. Начиная с 4-5 лет детям доступно решение простейших задач с кругами Эйлера, сначала с разъяснениями взрослых, а потом и самостоятельно. Овладение методом решения задач с помощью кругов Эйлера формирует у ребенка способность анализировать, сопоставлять, обобщать и группировать свои знания для более широкого применения.

Пример

На рисунке представлено множество – все возможные игрушки. Некоторые из игрушек являются конструкторами – они выделены в отдельный овал. Это часть большого множества «игрушки» и одновременно отдельное множество (ведь конструктором может быть и «Лего», и примитивные конструкторы из кубиков для малышей). Какая-то часть большого множества «игрушки» может быть заводными игрушками. Они не конструкторы, поэтому мы рисуем для них отдельный овал. Желтый овал «заводной автомобиль» относится одновременно к множеству «игрушки» и является частью меньшего множества «заводная игрушка». Поэтому и изображается внутри обоих овалов сразу.
Вот несколько задач для маленьких детей на логическое мышление:

  • Определить круги, которые подходят к описанию предмета. При этом желательно обратить внимание на те качества, которыми предмет обладает постоянно и которыми временно. Например, стеклянный стакан с соком всегда остается стеклянным, но сок в нем есть не всегда. Или существует какое-то обширное определение, которое включает в себя разные понятия, подобную классификацию тоже можно изобразить с помощью кругов Эйлера. Например, виолончель – это музыкальный инструмент, но не каждый музыкальный инструмент окажется виолончелью.

  • Определение круга, который не подходит к описанию предмета. Например, баранка – она круглая и вкусная, а определение зеленая к ней не подходит. Можно также придумать, какой предмет подойдет для пересечения другой пары кругов. Пример – круглая и зеленая может быть пуговица.
  • Определить предмет, который подходит под описание всех кругов. Для каждого круга выбирается какое-либо качество (например – сладкое, оранжевое, круглое). Ребенок должен назвать предмет, который одновременно соответствует всем этим описаниям (в данном примере подойдет апельсин), также можно спросить ребенка, какие предметы могут соответствовать двум описаниям из трех, то есть будут находиться на пересечении каждой пары кругов (например, сладкое и оранжевое – карамелька, оранжевое и круглое – мяч, круглое и сладкое – арбуз).

Для детей постарше можно предлагать варианты задач с вычислениями – от достаточно простых до совсем сложных. Причем самостоятельное придумывание этих задач для детей обеспечит родителям очень хорошую разминку для ума.

  • 1.Из 27 пятиклассников все изучают иностранные языки – английский и немецкий. 12 изучают немецкий язык, а 19 – английский. Необходимо определить, сколько пятиклассников заняты изучением двух иностранных языков; сколько не изучают немецкий; сколько не изучают английский; сколько изучают только немецкий и только английский?

При этом первый вопрос задачи намекает в целом на путь к решению этой задачи, сообщая, что некоторые школьники изучают оба языка, и в этом случае использование схемы также упрощает понимание задачи детьми.

автор Леонид Серый

Кстати, если вы не можете определиться, какую профессию выбрать, попробуйте нарисовать схему в виде кругов Эйлера. Возможно, чертеж вроде этого поможет вам определиться с выбором:

Те варианты, которые окажутся на пересечении всех трех кругов, и есть профессия, которая не только сможет вас прокормить, но и будет вам нравиться.

И еще одна табличка…

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *