Развертка усеченного конуса

Построение развертки конуса

Развертка поверхности конуса — это плоская фигура, полученная путем совмещения боковой поверхности и основания конуса с некоторой плоскостью.

Варианты построения развертки:

  • Прямой круговой конус
  • Наклонный конус
  • Усеченный конус

Развертка прямого кругового конуса

Развертка боковой поверхности прямого кругового конуса представляет собой круговой сектор, радиус которого равен длине образующей конической поверхности l, а центральный угол φ определяется по формуле φ=360*R/l, где R – радиус окружности основания конуса.

В ряде задач начертательной геометрии предпочтительным решением является аппроксимация (замена) конуса вписанной в него пирамидой и построение приближенной развертки, на которую удобно наносить линии, лежащие на конической поверхности.

Алгоритм построения

  1. Вписываем в коническую поверхность многоугольную пирамиду. Чем больше боковых граней у вписанной пирамиды, тем точнее соответствие между действительной и приближенной разверткой.
  2. Строим развертку боковой поверхности пирамиды способом треугольников. Точки, принадлежащие основанию конуса, соединяем плавной кривой.

Пример

На рисунке ниже в прямой круговой конус вписана правильная шестиугольная пирамида SABCDEF, и приближенная развертка его боковой поверхности состоит из шести равнобедренных треугольников – граней пирамиды.

Рассмотрим треугольник S0A0B0. Длины его сторон S0A0 и S0B0 равны образующей l конической поверхности. Величина A0B0 соответствует длине A’B’. Для построения треугольника S0A0B0 в произвольном месте чертежа откладываем отрезок S0A0=l, после чего из точек S0 и A0 проводим окружности радиусом S0B0=l и A0B0= A’B’ соответственно. Соединяем точку пересечения окружностей B0 с точками A0 и S0.

Грани S0B0C0, S0C0D0, S0D0E0, S0E0F0, S0F0A0 пирамиды SABCDEF строим аналогично треугольнику S0A0B0.

Точки A, B, C, D, E и F, лежащие в основании конуса, соединяем плавной кривой – дугой окружности, радиус которой равен l.

Развертка наклонного конуса

Рассмотрим порядок построения развертки боковой поверхности наклонного конуса методом аппроксимации (приближения).

Алгоритм

  1. Вписываем в окружность основания конуса шестиугольник 123456. Соединяем точки 1, 2, 3, 4, 5 и 6 с вершиной S. Пирамида S123456, построенная таким образом, с некоторой степенью приближения является заменой конической поверхности и используется в этом качестве в дальнейших построениях.
  2. Определяем натуральные величины ребер пирамиды, используя способ вращения вокруг проецирующей прямой: в примере используется ось i, перпендикулярная горизонтальной плоскости проекций и проходящая через вершину S.
    Так, в результате вращения ребра S5 его новая горизонтальная проекция S’5’1 занимает положение, при котором она параллельна фронтальной плоскости π2. Соответственно, S’’5’’1 – натуральная величина S5.
  3. Строим развертку боковой поверхности пирамиды S123456, состоящую из шести треугольников: S01060, S06050, S05040, S04030, S03020, S02010. Построение каждого треугольника выполняется по трем сторонам. Например, у △S01060 длина S010=S’’1’’0, S060=S’’6’’1, 1060=1’6’.

Степень соответствия приближенной развертки действительной зависит от количества граней вписанной пирамиды. Число граней выбирают, исходя из удобства чтения чертежа, требований к его точности, наличия характерных точек и линий, которые нужно перенести на развертку.

Перенос линии с поверхности конуса на развертку

Линия n, лежащая на поверхности конуса, образована в результате его пересечения с некоторой плоскостью (рисунок ниже). Рассмотрим алгоритм построения линии n на развертке.

Алгоритм

  1. Находим проекции точек A, B и C, в которых линия n пересекает ребра вписанной в конус пирамиды S123456.
  2. Определяем натуральную величину отрезков SA, SB, SC способом вращения вокруг проецирующей прямой. В рассматриваемом примере SA=S’’A’’, SB=S’’B’’1, SC=S’’C’’1.
  3. Находим положение точек A0, B0, C0 на соответствующих им ребрах пирамиды, откладывая на развертке отрезки S0A0=S’’A’’, S0B0=S’’B’’1, S0C0=S’’C’’1.
  4. Соединяем точки A0, B0, C0 плавной линией.

Развертка усеченного конуса

Описываемый ниже способ построения развертки прямого кругового усеченного конуса основан на принципе подобия.

Алгоритм

Расчёт развёртки конуса

Информация

Часто в строительной практике или даже повседневной жизни приходится сталкиваться с необходимостью построения конуса. Процесс построения требует определенных знаний и высокой точности, иначе конус будет иметь определенные отклонения от необходимых параметров и это может привести к тем или иным неприятным последствиям. Расчет развертки конуса является важнейшей частью при создании выкройки для конуса. Данный показатель относительный и при его расчете необходимо знать ряд других параметров. При этом, необходимо понимать, что существует два вида конусов. Первый вид называется «Прямой конус», то есть классическом его понимании. Второй вид называется «Усеченный конус» — часть конуса, которая заключается между основанием и секущей плоскостью, параллельной его основанию. Расчет развертки прямого конуса отличается от того, как производится расчет развертки усеченного конуса. Отличие заключается в том, что у усеченного конуса появляется еще одна переменная и по итогу расчета калькулятор сообщает в расчете не только расстояние и угол, но и два радиуса.

Наш онлайн калькулятор имеет встроенные формулы, что позволяет производить расчет данных показателей, просто выбрав вид конуса и введя абсолютные значения в соответствующие ячейки. Возможности и принцип построения системы калькулятора исключают допущение ошибок при расчетах, и избавляют пользователя от необходимости в самостоятельном детальном изучении методик расчета.

Преимущества, которые дает онлайн калькулятор

  • Большая экономия времени;
  • Гарантированно правильный и предельно точный расчет;
  • Удобный интерфейс, который будет понятен даже новичку;
  • Открытый доступ к калькулятору для всех пользователей.

Таким образом, можно сделать вывод, что расчет развертки конуса требует концентрации внимания на многих деталях, и самостоятельный его расчет является достаточно трудоемким. Наш онлайн калькулятор является инструментом, который упростит Вашу жизнь при точном расчете данного показателя. Также Вам доступна информация о том, какая формула применяется при расчете и определенная справочная информация.

Калькулятор рассчитывает параметры развертки прямого кругового конуса на плоскости. Картинка ниже иллюстрирует задачу.

Про конус нам известен радиус основания и высота конуса (или высота усеченного конуса). Для описания развертки нам надо найти радиус внешней дуги, радиус внутренней дуги (если конус усеченный), длину образующей и центральный угол.

Длину образующей можно посчитать по теореме Пифагора:
,
при этом для полного конуса r1 просто обращается в ноль.

Радиус внутренней дуги можно найти из подобия треугольников:
,
опять же, для полного конуса она равна нулю.

Соответственно, радиус внешней дуги:
,
для полного конуса он совпадает с L.

Ну и центральный угол:

Развертка (выкройка) конуса

Радиус основания конуса r2 Высота конуса H Радиус второго основания r1 Радиус второго основания (для случая усеченного конуса) Точность вычисленияЗнаков после запятой: 2 Рассчитать Длина образующей L Радиус внешней дуги выкройки R2 Радиус внутренней дуги выкройки R1 Центральный угол выкройки (в градусах) Длина внешней дуги Длина внутренней дуги Длина хорды, соединяющей края внешней дуги save Сохранить extension Виджет

Развертка усеченного конуса является одним часто задаваемым заданием по инженерной графике для студентов в учебных заведениях.

Рассмотрим пошаговое построение с подробным описанием согласно этому заданию: дан конус высотой 120 мм и диаметром 100 мм. Необходимо провести линию сечения под углом 45 0 на расстоянии 60 мм от оси фигуры.

Приступим к выполнению:

1.) Чертим третий вид конуса;

2.) Разбиваем вид сверху на 12 составляющих частей. Это необходимо для построения развертки;

3.) Находим точки сечения на нижнем рисунке;

4.) Подписываем точки полученного сечения на видовых проекциях;

5.) Переносим точки сечения на третью проекцию (вид слева);

6.) Обводим толстыми видимыми линиями полученную фигуру;

7.) Строим развертку, если бы она не имела выреза. Отмеряется расстояние от вершины конуса до основания и от центральной оси чертится 12 участков;

8.) Обозначаем на развертке участки для лучшего представления о том где строить точки;

9.) Отмеряем расстояние на конусе (фронтальной проекции) циркулем и чертим таким же размером на развертке и подписываем полученную точку. По такому принципу осуществляется нахождение точек на развертке;

10.) Обводим толстыми линиями чертежа полученную развертку усеченного конуса.

Вы также можете посмотреть видео:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *